
Eur. Phys. J. A 4, 217–220 (1999) THE EUROPEAN
PHYSICAL JOURNAL A
c© Springer-Verlag 1999

Short note

Excitation energy as a basic variable to control nuclear
disassembly
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Abstract. Thermodynamical features of Xe system is investigated as functions of temperature and freeze-
out density in the frame of lattice gas model. The calculation shows different temperature dependence of
physical observables at different freeze-out density. In this case, the critical temperature when the phase
transition takes place depends on the freeze-out density. However, a unique critical excitation energy reveals
regardless of freeze-out density when the excitation energy is used as a variable instead of temperature.
Moreover, the different behavior of other physical observables with temperature due to different ρf vanishes
when excitation energy replaces temperature. It indicates that the excitation energy can be seen as a more
basic quantity to control nuclear disassembly.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 24.60.-k Statistical theory and fluctu-
ations – 25.70.Pq Multifragment emission and correlations

The phase transition and critical phenomenon of small
systems is an interesting subject in recent nuclear physics
research. The break-up of nuclei due to violent colli-
sions into several intermediate mass fragments (IMF), can
be viewed as critical phenomenon as observed in fluid,
atomic, and other systems. It prompts the possible sig-
nature on the liquid gas phase transition of the nuclear
system. On one hand, the onset of the multifragmenta-
tion [1] and vaporization [2] channels can be seen as the
signature of the boundaries of phase mixture [3]. This is
supported further by the fact that the caloric curve in a
certain excitation energy range [4] shows a saturate sim-
ilar to a first order phase transition, in the framework of
statistical equilibrium models [5]. On other hand, the ob-
servation of critical exponents parameters in the charged
or mass distribution of the multifragmentation system [6]
can be interpreted as an evidence of the phase transition.
Recently, the lattice gas model (LGM) has been applied
to treat phase transition and critical phenomenon in the
nuclear disassembly for isospin symmetrical [7] and asym-
metrical [8,9] nuclear systems. LGM assumes a freeze-out
density ρf with thermal equilibrium at temperature T .
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The temperature was adopted naturally as a variable to
study the feature of disassembly in nearly all previous cal-
culation of LGM. In this paper, we will illustrate that the
excitation energy can be taken as a more basic quantity to
control the disassembly of nuclear system rather than tem-
perature via studying the features of critical phenomenon
and other physical observables in the lattice gas model.

In the lattice gas model, A nucleons with an occupa-
tion number s which is defined as s = 1 (-1) for a pro-
ton (neutron) or s = 0 for a vacancy, are placed in the
L sites of lattice. Nucleons in the nearest neighbouring
sites have interaction with an energy εsisj . The hamilto-

nian is written by E =
∑A
i=1

P 2
i

2m +
∑
i<j εsisjsisj . The

interaction constant εsisj is related to the binding energy
of the nuclei. Here εnn,pp = ε−1−1,11 = 0 MeV, εpn,np =
ε1−1,−11 = - 5.33 MeV is used. The freeze-out density of
disassembling system is ρf = A

Lρ0 where ρ0 is the normal
nucleon density. The disassembly of the system is to be
calculated at ρf , beyond which nucleons are too far apart
to interact. N+Z nucleons are put in L cubes with size l3
by Monte Carlo sampling using the Metropolis algorithm.
Once the nucleons have been placed, their momentum is
generated by a Monte Carlo sampling of Maxwell Boltz-
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Fig. 1. The observables as a function
of temperature (the left column) or
excitation energy (the right column)
in different freeze-out density: the
τ parameter from the power law fit
to mass distribution (a,g), the aver-
age multiplicity of intermediate mass
fragments < IMF > (b,h), the in-
formation entropy H (c,i) and the
second moment S2 (d,j). The map-
ping from temperature to excitation
energy is plotted in Fig.1e and the
specific heat is shown in Fig. 1f

mann distribution. Various observables can be calculated
in a straightforward fashion.

One of the basic measurable quantities is the distri-
bution of fragment mass. In this LGM, two neighboring
nucleons are viewed to be in the same fragment if their
relative kinetic energy is insufficient to overcome the at-
tractive bond: P 2

r /2µ+ εnp < 0. Once the fragment mass
distribution is built, we can extract the effective power law
parameters via fitting the mass distribution of fragments
with Y (Ai) ∝ A−τi and its second moment of fragment dis-

tribution defined as [10] S2 =
∑

i6=Amax
A2
i ∗ni(Ai)

A , where
ni(Ai) is the number of fragments with Ai nucleons and
the sum excludes the largest cluster Amax. There are a
minimum of τ and a maximum of S2 at critical point for
an infinite system. Besides the above quantities, we will
use the average multiplicity < IMF > of IMF and the
information entropy H to search the critical point [11,12].
H was defined firstly by Shannon in information theory

[13] and can be introduced into nuclear dissociation [12],
it reads H = −

∑
i pi ∗ ln(pi), where pi is the probability

having ”i” produced particles in each event, the sum is
taken over all multiplicities of products from the disassem-
bling system. H reflects the capacity of the information or
the extent of disorder.

We choose the medium size nuclei 129Xe as an exam-
ple to analyze the nuclear disassembly. Three freeze-out
densities of 0.18ρ0, 0.38ρ0, and 0.60ρ0, corresponding to
the lattice size of 93, 73 and 63 respectively, were used.
The calculations were performed from 3 MeV to 7 MeV
and 1000 events were accumulated at each temperature
and freeze-out density.

We show the temperature and freeze-out density de-
pendences of τ , < IMF >, H and S2 in the left column
of Fig.1. First, the critical temperatures determined by
the extreme values are the same for the same freeze-out
density, indicating that critical phenomenon really exists.
Second, the freeze-out density determines the tempera-
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ture where the critical point is reached in this model.
The critical point takes place at 4.25 MeV for freeze-out
density 0.18 ρ0, 5.5 MeV for 0.38 ρ0, and 6.5 MeV for
0.60 ρ0, respectively. Obviously, the higher the freeze-out
density, the higher the critical temperature. In this case,
the critical behavior is determined by the two variables,
namely temperature T and freeze-out density ρf as ob-
served in Pan and Das Gupta [7]. But the extraction of T
and ρf is difficulty in view of experiments. On one side,
the different thermometers give different apparent tem-
peratures [14,15]. On other side, the freeze-out density is
not directly measurable quantity in experiments. More-
over, the different initial conditions of models maybe re-
sult in different freeze-out density during the confronta-
tions of model calculations with experimental data. All
these facts complicate the accurate determination on tem-
perature and freeze-out density and hence interfere with
the correct extraction of physics. So it is interesting to
search other variables to locate the critical phenomenon.
A natural ideal is to adopt the excitation energy per
nucleon E∗/A, which can be deduced or reconstructed
from the experiments, especially in 4π detector measure-
ments [15]. In the lattice gas model it can be defined as

E∗/A = ET − Eg.s. = 3
2T + εn,p

NTn,p
A − εn,p

Ng.s.n,p

A , where
NT
n,p and Ng.s.

n,p is the number of the bonds of unlike nu-
cleons at T and in the ground state, respectively. Ex-
perimentally the excitation energy of a nuclear system is
generally given with respect to a cold (T=0) nucleus at
normal nuclear density. In this classical model, we adopt
the similar definition for the ground state, ie. it corre-
sponds to a cold nucleus at zero temperature and normal
nuclear density where there is no kinetic energy and so
that the ground state energy per nucleon is −εn,p

Ng.s.n,p

A .
Practically, Ng.s.

n,p is determined by the geometry and is
taken as the maximum bond number of unlike nucleons
for 129Xe as it closes to zero temperature and normal
nuclear density as possible. The Fig.1e shows the exci-
tation energy per nucleon E∗/A in different temperature
and freeze-out density. Noted that the curves of excitation
energy are not linear with temperature. If performing the
differentials for these curves, we can obtain an important
thermodynamical quantity: the specific heat per nucleon
at constant volume (or density) as Cv/A = ∂(E∗/A)

∂T . The
Fig.1f shows Cv/A as a function of T for the disassembling
system 129Xe at three ρf . Clearly, the peaks of Cv/A exist
for the systems at each ρf and locate closely at theirself
critical temperatures, which supports strongly the view-
point about critical feature as said above. By the mapping
from E∗/A to T , we re-plot the τ , < IMF >, H, and S2
as a function of excitation energy instead of temperature
in the right column of Fig.1. Now nearly all the critical
points locate at the same excitation energy regardless of
the freeze-out density. Hence the excitation energy can be
viewed as a more basic quantity in controlling the reaction
dissociation.

In order to illustrate this point further, Fig. 2 gives the
average mass of the largest fragment (Amax), the isotopic
ratio R(p/d) between protons and deuterons, the isobaric

Fig. 2. The average mass of the largest fragment in each event
Amax (a,e), the isotopic ratio R(p/d) between the protons and
deuterons (b,f), the isobaric ratio R(t/3He) between the tri-
tons and the Helium-3 (c,g), and the ratio R(n/p) of neutrons
and protons (d,h). The left column is plotted versus the tem-
perature T and the right column versus the excitation energy

ratio R(t/3He) between tritons and helium-3 and the ra-
tio R(n/p) of emitted neutrons to protons as a function
of temperature or excitation energy, respectively, in differ-
ent freeze-out density. Again, the discrepancies stemming
from different freeze-out density minimize when the exci-
tation energy is used as the variable, and the curves for
different ρf merge approximately into a single line.

To summarize, we studied the critical feature of Xe
system and found that the critical temperature where the
phase transition occurs changes with the freeze-out den-
sity which complicates the confrontation the theoretical
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predication with the experimental results. Contrary, we
found that a unique critical excitation energy and the
same excitation energy dependence of other physical ob-
servables reveals regardless of the freeze-out density, which
indicates that the excitation energy can be viewed as a
basic parameter to control the dissociation of the nuclear
system. Unlike the temperature and freeze-out density, the
excitation energy can be well extracted from experiments,
especially for experiments using 4π multidetectors nowa-
days. Hence the use of excitation energy as a basic param-
eter will make it easier and definite to extract physics from
the direct comparison between the experimental data and
the theoretical calculation.
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